

Abstract—Two important problems concerning software

engineering are identified: low efficiency of the software
development process, and lack of programmers. Three key
components with considerable impact on the software development
process, namely the software engineering method, the problem
specification language, and the platform used, are identified. Four
state of the art reviews are prepared including software engineering
methods, problem specification languages, cloud computing
platforms, and related works. This research problem is solved by the
realization of the Knowledge Based Automated Software Engineering
(KBASE) method for generation of enterprise information systems,
based on 5GL specification languages, common platform for
automated programming and a set of intelligent components for
generation of new applications from well-defined system and
business reusable components in three groups – domain independent,
domain dependent and problem solving. KBASE concept, KBASE
technological process, KBASE specification language, and KBASE
platform are described. Key results achieved in the related works are
detailed. The efficiency of the new computational paradigm is
presented.

Keywords—architecture-based, knowledge based automated
software engineering, ontology, business architecture; software
architecture; infrastructure architecture.

I. INTRODUCTION
HE overall IT spending in 2018 for enterprise information
systems (data center systems, devices, enterprise software,
and IT services) is projected to 2.2 trillion USD [14]. The

enterprise software and IT services markets form 60% of the
overall IT spending worldwide. Its average annual growth for
2017-2022 is forecasted at 13.8% – the highest expected
growth for this period. At the same time, the development
process of Enterprise Information Systems (EIS) is still less
effective and more resource consuming than the software
industry and their clients would require.

I. Stanev is with the Computer Informatics Department of University of

Sofia “St. Kliment Ohridski”, Sofia 1000, Bulgaria (phone: +359 2 8161 508,
e-mail: instanev@fmi.uni-sofia.bg).

M. Koleva is with the Computer Informatics Department of University of
Sofia “St. Kliment Ohridski”, Sofia 1000, Bulgaria, and the Informatics and
Information Technologies Department of University of Ruse “Angel
Kanchev”, Ruse 7000, Bulgaria (e-mail: mkoleva@fmi.uni-sofia.bg).

The demand for software developers is rapidly increasing.
According to the U.S. Bureau of Labor Statistics [31],
software developer jobs are expected to grow much faster than
the average - with 24% from 2016 to 2026. The main reasons
for this tendency are due to: (1) the increasing demand of
software products; (2) the insufficient efficiency of widely
used software development methods and tools.

This paper presents a solution to these problems by
introducing the new computational paradigm Programming
without programmers. The new paradigm is realized through
the Knowledge Based Automated Software Engineering
(KBASE, [7]) method.

II. STATE OF THE ART
The efficiency of the software development process (SDP)

is a function of its three main components: the software
engineering method, the problem specification language, and
the platform used.

Four state of the art reviews are prepared including:
Software Engineering (SE) methods, problem specification
languages, cloud computing platforms, and KBASE related
works.

The Software engineering (SE) methods can be split in
three groups: (1) methods covering only the management
aspects of the SDP, called “shell” methods such as: PRINCE2
(Projects IN Controlled Environments [2]); TEMPO (TAXUD
Electronic Management of Projects Online); PMBOK (Project
Management Body of Knowledge [27]); (2) methods partially
covering the management and technological aspects of rapid
SDPs (the Agile family of methods [23]); (3) methods
covering to a great extent the management and technological
aspects of SDPs such as Rational Unified Process (RUP [24]).

The main strength of the Shell group is the well-defined
project management process. The key weakness of these
methods is the lack of standardized technological process.
Therefore, these methods are neither efficient nor appropriate
for the SDP automation.

The key strength of the Agile group is the method simplicity
and project management efficiency. The important weakness
of these methods is the lack of consistent design. This reduces

Why the standard methods, 5GL, common
platforms and reusable components are the four

pillars of the new computational paradigm
Programming without programmers

Ivan Stanev, Maria Koleva

T

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 49

to minimum the software reusability and make the methods
inappropriate for developing Enterprise Information Systems
(EIS).

The important strength of the RUP group is the well-
defined IT technological process. The key weaknesses of these
methods are their complexity and the expensive development
process. The complexity of the methods makes the SDP and
testing too heavy and inefficient.

To overcome these problems a new SE method shall be
defined combining the Agile and RUP strengths. This method
shall improve the simplicity and efficiency of the software
development process by introducing reusable components and
automation of the process.

A number of problem specification languages, including
the most disseminated imperative languages Java and C#, the
declarative languages ML and Prolog, the Generative
Modelling Languages UML and BPMN, the fifth generation
modelling language Net, and a Natural Language Processor are
analyzed in [6].

The main strengths of the Imperative Languages (IL)
group (Java, C#) concern the fast runtime performance, the
availability of rich sets of supporting libraries and third party
components, the good platform portability. The key
weaknesses of this language group refer to the lack of
incorporated problem solver (i.e. specification of the problem
being solved and specification of the algorithm for problem
solving), and the huge efforts for design, implementation, and
testing by highly qualified IT specialists. So, nevertheless that
these languages are of great industrial importance, they are
neither efficient nor appropriate for SDP automation.

The key strengths of the Declarative Languages (DL)
group (ML, Prolog) concern the incorporated problem solver
(i.e. only specification of the problem being solved is required,
thus DL are suitable for automated programming), and the
small design, implementation, and testing effort by IT
specialists having relatively low qualification. The important
weaknesses of this language group refer to the slow runtime
performance (e.g. the machine arithmetic), and the lack of
tools for design of complex problems. The DLs are therefore
inappropriate for EIS specification and development.

The important strengths of the Generative Modelling
Languages (GML) group (BPMN, UML) are the well-
standardized modelling capabilities, and the small design
effort of domain area experts and IT specialists with relatively
low qualification. Their key weakness is the considerable gap
between the design and implementation models. Hence, GML
are not appropriate for realization of Enterprise IS, while the
SE methods based on GML are not efficient for the whole SE
life cycle.

The important strength of the Fifth Generation Languages
(5GL) group (Net) concerns the availability of incorporated
tools for intelligent problem solving. Their key weakness
refers to the insufficient set of supporting libraries and third
party components. The 5GL are therefore not appropriate for
realization of Enterprise IS, and the SE methods based on the

5GL are inefficient.
The important strength of the Natural Language

Processing (NLP) group (Bulgarian Language Processor) is
the effortless use of NL human-machine interfaces for all
native speakers of this language. The key weaknesses refer to
the low reusability of the specified components, and the lack
of unified techniques for description of NL semantics. The use
of NLP alone as a tool for design, implementation, and testing
makes the processes too heavy and inefficient.

In order to overcome these problems a specification
language shall be created as a combination of the strengths of
IL, DL, GML, 5GL and NLP. This language shall improve the
simplicity and efficiency of problem specification. For that
purpose, the language shall be a GML and 5GL standardized
modelling language covering the whole SE life cycle. The
language shall be equipped with NLP, it shall include a
problem solver and shall have the possibility for automated use
of wide range of supporting libraries and third party
components.

The industrial cloud [25] platforms [5] Amazon AWS,
Microsoft Azure, Google App Engine, VMWare vCloud,
IBM Bluemix, HP Helion, and Oracle OCPaaS are analyzed
in [11] as referred to.

The important strengths of the platforms concern the high-
level integration of hardware and software tools in the cloud,
and the good quality of tools for control of distributed
computation in the cloud. Their key weakness refers to the
insufficient use of tools for intelligent self-organization, as
well as the state engine and multi-agent control. This weakness
makes the existing platforms too expensive and inefficient for
realization of complex ISs.

To overcome these difficulties, the existing platforms are
extended with new tools for specification of the state engine
and multi-agent architectures, and the library of intelligent
components for platform control and self-organization.

Some important related works of the KBASE team
demonstrating the SDP efficiency improvement capabilities of
the KBASE concept refer to (1) the Module for Automated
Programming of Robots (MAPR [6]) which generates
programs for Robot Control based on a natural language
specification; (2) the Intelligent Product Manual (IPM [7])
which is a software system generating Product Manuals for
manufacturing products; (3) the Built-in-Test Adaptive
Document Display (BIT [26]) which realizes the automation
of Contract tests process, during the integration of a
Commercial-off-the-shelf component with hosting system and
the automation of Quality of Service tests process during real-
time operation; (4) the Information Objects Manager (IO.Man
[7]) which is a tool generating software components for
document management through information objects structure
and behavior formal specification; (5) Bulgarian e-Customs
(BeC [12]), (6) Bulgarian e-Health (BeH [10]) and (7)
Bulgarian e-Government (BeG [9]), which represent three
national EIS.

Four research questions (RQs) are identified analyzing the

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 50

related works: RQ1 How to generate machine code directly
from Business Architecture specification? RQ2 How to
transfer the key responsibility for the software development
process from IT experts to DA experts? RQ3 How to replace
handmade programming with intelligent self-organizing
components in the cloud platform? RQ4 How to improve
component reusability by introducing domain dependent,
domain independent and problem solving phases in software
development process?

This research problem is solved by the realization of the
standardized method KBASE for generation of enterprise ISs,
based on 5GL specification languages, common platform for
automated programming (CPAP) and a set of intelligent
components for generation of new applications from well-
defined system and business reusable components split in three
groups – domain independent, domain dependent and problem
solving.

III. RESEARCH METHODOLOGY
The research methodology actions are grouped in the

following 6 categories: (1) SE state-of-the-art reviews. State-
of-the-art reviews, including reviews of SE Methods, SE
computational paradigms, SE Specification techniques, and SE
Platforms are performed. The KBASE objectives are defined
after analysis of the results. (2) KBASE case studies analysis.
Several different types of information systems are selected for
analysis in accordance with the following criteria: (a) IS must
be in the context of KBASE and relate to different parts of the
KBASE concept; (b) IS must have well defined intelligent
functions; (c) IS should use GML, 5GL, or NL specification
language; (d) IS should have a full set of available detailed
deliverables. The selected systems are the Rule Based
Information System Umcho1 [28], the Embedded information
system OSCAR [13], the Manufacturing Information System
IPM [3], the Distributed Information System BeG [4], the
Self-organized Information System IPM-DD [26]. (3) KBASE
Method creation. Definition of KBASE IT perspective
including description of the KBASE concept, as well as
method phases, objects, and components. KBASE
technological process is defined to cover roles, disciplines, and
artefacts. (4) KBASE Specification Language creation.
Description of KBASE full set of Specification Techniques.
(5) KBASE Platform creation. Detailed description of CPAP
structure and components. (6) KBASE results. Description of
Case Studies results based on the KBASE method, SL, and
CPAP.

IV. THE METHOD CONCEPT
The main KBASE objective is the creation of a SE method

and a tool for IS generation, which significantly improve the
efficiency of the software development process through: (1)
reduction of SE method steps by generating machine code
directly from the business architecture, excluding the software
architecture design steps, (2) creation of specification language
for programming with limited involvement of programmers,

and (3) inclusion of intelligent capabilities in the proposed
platform.

The KBASE concept (Fig. 1) is based on three categories of
objects: Business Models (BM), Business Model Templates
(BMT), and Virtual Reality Model (VRM). Business models
are used for specification of the required IS. Business Model
Templates are predefined reusable parts of BM, which save
design time and shorten the specification process. Virtual
reality model is a predefined model of the Domain Area
describing BM structure, behavior, and constraints. BM is
verified against VRM for completeness, precision, and
readiness for IS generation.

The VRM is a subject of interdisciplinary research. The
purpose of this research is to find the intersection of the three
disciplines – Software Engineering, Economics, and
Linguistics. The created VRM covers the following
requirements: (1) VRM is common for all three disciplines; (2)
VRM is established of three views (SE, Economics, and
Linguistics), which are integrated in a common structure
without collisions; (3) VRM is described using specification
techniques, which are natural for each of the three different
groups of experts, and easy to understand and use by the other
two groups; (4) the VRM describes the structure, behavior,
and constraints of the virtual images of the real world objects
used in the three disciplines; (5) the VRM contains the
minimum information required by the three Object Verifiers to
confirm the BMs readiness for machine code generation.

The term “generation” means generation of objects,
components or instruments for integration and / or
parametrization of pre-defined objects and components.
Nevertheless that the whole IS could be generated, the typical
generation process within the scope of the proposed project
refers to the generation of a machine code for integration and /
or parametrization of pre-defined objects and components.

The generated IS is specified by a Business model that
includes three types of components: Business control
structures, Business objects, and Business architecture. All
Business model components are built by composite objects,
primitive objects and data objects. Composite objects are the
control structures, namely, the business processes, the state
engines, and the multi-agent systems. The primitive objects are
components, services, interfaces, messages, business rules and
third party components. The data objects are parameters of the
business models, parameters of the generated IS, and/or data
of the solved problems.

BM, BMT and VRM objects are stored in two Knowledge
Bases – one for composite objects and one for primitive
objects, and in one Data Base – for data objects. All three
repositories are used in synergy during the domain dependent,
domain independent and problem solving phases of the
process.

BM is specified in the terms of a Specification Language
(SL) which has the characteristics of the fifth generation
declarative modelling languages. SL enables incomplete and
imprecise specification based on the used standard modelling

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 51

languages (BPMN, UML, CMMN, DMN), the fifth generation
language Net, and the restricted natural language. SL
specifications include definitions of composite objects,
descriptors of primitive objects, and descriptors of data
objects. SL covers the whole SE method life cycle.

BM specifications formal validation is realized by three
processors (for composite, primitive, and data objects). The
semantic verification for completeness and precision of BM
specifications is carried out by three intelligent verifiers. The
verifiers compare the BM specifications with the pre-defined
domain area VRM. If any incompleteness and / or imprecision
is found, the verifiers remove them or request additional

information from the experts in order to remove them.
Once completeness and precision necessary to solve the

problem are reached, the business specifications are passed on
to a product generator. The verified BM specifications, and
the repositories containing the predefined Primitive objects
and Data objects, are inputs to the Product Generator. The
generated IS is the output of the Product Generator. The role
of the Product Generator is to generate the machine code for
BM Composite objects, and to map the descriptors of
primitive and data object to their machine code stored in the
relevant repositories.

Fig. 1. KBASE Concept

The software development process is divided into three

main phases, each with IT Perspective and Domain Area
Perspective: (1) The Domain Independent Phase involves the
software architect, the designer and the data engineer. They
prepare the VRM and BMT complex objects, primitive
objects, and data objects, which are suitable for various
domain areas. Usually, these objects are developed once; they
are re-usable and are subject to minor changes only in
exceptional cases; (2) The Domain Dependent Phase
involves the software architect, the designer and the data
engineer. They prepare the VRM and BMT composite objects,
primitive objects, and data objects suitable for the design
domain area. This phase also involves the business analyst
who designs the BM on demand by the end users. If necessary,
the business analyst requires relevant modifications of VRM

and BMT to be made by the software architect, the designer
and the data engineer. The product is generated; (3) Problem
solving phase involves the end user who uses the generated
product for solving a specific problem based on the input data
that he has provided.

V. KBASE TECHNOLOGICAL PROCESS
The Technological Process is intended to standardize the

KBASE development process. The KBASE development
process is detailed in [8] and defines: (1) the technological
roles responsible for the work performed within each
discipline; (2) the disciplines presenting the actions performed
throughout the entire lifecycle of the KBASE product
including the specification techniques used (cf. section II); and
(3) the resulting artefacts including the minimum full set of

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 52

artefacts required for quality development and maintenance of
KBASE products.

The KBASE technological process combines the Agile and
RUP strengths (cf. section II) in order to improve the
efficiency of the software development. For the purpose of the
KBASE method, the following simplifications/ extensions are
proposed: (1) the pre-project is performed by implementing
the disciplines and actions to a limited extent; (2) the
technological roles include mainly the groups of roles
prescribed in the RUP. The Knowledge Engineer role is added
to cover activities related to automated programming and
knowledge processing; (3) the artefacts set contains the most
important and most commonly used RUP artefacts including
the minimum full set of artefacts required for quality
development and maintenance of KBASE products; (4) the
disciplines include RUP disciplines with small modifications,
namely Project Management, Requirements, Infrastructure,
Analysis, Testing, Design, Generation and Implementation,
Exploitation; (5) the RUP discipline Business Modeling is
removed since low productive, and highly resource
consuming; (6) the RUP discipline Analysis and Design is
separated in two KBASE disciplines – first Analysis, and
second Design, in order to reduce the gap between domain
area experts and analysts on the one hand and between analysts
and designers on the other hand; (7) the RUP discipline
Implementation is replaced by Generation & Implementation.
This discipline covers the process of automated generation of
KBASE products from incomplete and imprecise
specifications.; (8) the RUP horizontal disciplines
Configuration and Change management, Project management,
and Environment discipline process aspects are combined in
one Management discipline to optimize project realization.
The “Management” discipline represents horizontal activities
related to planning, specification and realization; (9) the
KBASE Requirements discipline uses the Contextual design
models which improve the quality of primary information
collection; (10) the KBASE Analysis discipline uses the
process-based, object-based and event-based specification
techniques instead of the RUP Use Case Specification in order
to reduce the resources for UML model completion; (11) the
KBASE Design discipline uses ontologies for automation of
the development process; (12) the KBASE Generation &
Implementation discipline uses automated support of models
and documents; (13) the Test discipline actions uses
structured Use Case specifications for better compliance
between use cases and test cases, improvement of the quality
and efficiency of the test process; (14) the Test discipline
actions uses the Built-in-Test method ([26]) for automated
testing; (15) the actions from the RUP Deployment discipline
are incorporated in the KBASE Exploitation discipline; (16)
the infrastructure aspects of the RUP Environment discipline
are incorporated in the KBASE Infrastructure discipline; (17)
the “infrastructure diagram” term is used instead of the UML
standard “deployment diagram” to better convey the purpose
with no changes in the notation; (18) the “Infrastructure

model” term is used instead of the standard RUP “Deployment
model” to incorporate the development, testing, pre-
production, production and management environments.

As a result of KBASE technological process introduction in
practice two important changes for the software companies are
identified: (1) during the first 2-3 projects performed in a new
domain area the productivity of the company is decreased by
10 – 20 %; (2) for every following project in the same domain
area the productivity of the same company is increased by 40 –
70 %.

VI. KBASE SPECIFICATION LANGUAGE
The actions of the method presented in section I are

implemented using nine Specification Techniques (ST) for
both formal and natural language specifications (TABLE I.).
They are detailed in [8]. The ST are used to specify the
different objects in the different phases of the process. These
techniques are linked (TABLE II.) with the steps of the
process, the artefacts prepared and the actions taken. The
specification techniques are implemented using wholly or
partly some of the most common specification standards.

TABLE I. SPECIFICATION TECHNIQUES AND STANDARDS

Technique Standard
NL based NL Combinatorial Dictionary
context based Contextual Design [16] (all models)
event based Case Management Model and Notation (CMMN,

[20]), Business Process Model and Notation (BPMN,
[19]), Unified Modeling Language (UML, [22]) -
component, deployment, and package diagrams

process based BPMN
message based BPMN, UML - sequence diagram
service based UML - all diagrams
object based UML state engine
rule based Decision Model and Notation (DMN, [21])
ontology based Web Ontology Language (OWL, [32])

The ST are used for KBASE specification preparation and
processing including syntactic and semantic, as well as
interoperability aspects. An automated programming technique
based on reuse of objects and components from KBASE
repositories is applied during the three Specification Phases
(cf. section IV).

The automated programming process is presented in
TABLE II. below. The disciplines names are given in the
“Disc.” column. The work performed within each discipline is
described in the “Discipline action” column. The specification
technique/s used for the relevant action is indicated in the last
column “Sp.technique” and it is further described in [8]. The
resulting artefact is listed in the “Art.” column.

TABLE II. KBASE LIFECYCLE DISCIPLINES

Disc. Art. Discipline action Sp.technique
Mng PMP project management and

realization
SPEM

Mng PMP configuration and change
management and realization

SPEM

Mng QMP quality management and
realization

SPEM

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 53

Disc. Art. Discipline action Sp.technique
Req RM gather and analyze relevant legal

base
context based,
NL based,
ontology based

Req RM build organization hierarchy object based
Req RM define functional areas context based
Req RM build roles hierarchy for each

functional area
object based

Req RM develop software architecture
concept

event based

Req RM gather functional requirements context based,
NL based,
ontology based

Req RM gather non-functional
requirements

context based,
NL based,
ontology based

Req RM categorize, classify and prioritize
functional requirements

context based

Req RM categorize, classify and prioritize
non-functional requirements

context based

Inf InfM infrastructure management and
realization

event based

A BM selection of control component
(business process / state engine /
multi-agent system)

process based /
object based /
event based

A BM control component description process based /
object based /
event based

A BM high level description of control
components tasks (task type,
input, output and system objects,
interfaces, interactions,
messages, reports, security,
actors, preconditions, post
conditions)

service based,
rule based

A DatM identify primary data objects -
documents, forms, reports,
messages

object based,
rule based

A DatM develop data objects hierarchy object based
A BM select candidate tasks event based
A BM select tasks event based
A BM refine control component with

candidate tasks to control
component with tasks

event based

A UCM define use cases for each task service based
A UCM define input and output data

objects for each task and select
data objects storage options

object based,
rule based

A UCM define input and output messages
for each task and select messages
storage options

object based

T TM test management and realization BIT
D SA develop software architecture

component diagrams
event based

D SA define system architecture
components

event based

D SA define interfaces of system
architecture components

interface based

D SA develop GUI navigation tree object based
D DesM prepare class diagrams of the

tasks
service based

D DesM define attributes and operations
of classes

service based

D DesM develop sequence diagrams of interface based

Disc. Art. Discipline action Sp.technique
the tasks

D DatM refine object data model into
relational data model

object based

D DatM relational data model
normalization (if necessary)

object based

D DesM develop statechart diagrams of
the tasks

interface based

D DesM develop statechart diagrams of
important data objects

interface based

D DatM update Data model object based,
rule based

D ImpM prepare package diagrams event based
D OM associate use case, component,

class, package and infrastructure
diagrams

ontology based

G&I ImpM code generation all
G&I ImpM code implementation all
G&I ImpM code integration all
Exp all deployment all
Exp all exploitation all
Exp all enhancement all
Exp all recycling all

Abbreviations: A – Analysis discipline, BIT - Built-in-Test ([26]),
BM – Business model, D – Design discipline, DatM – Data model,
DesM – Design model, Exp – Exploitation discipline, G&I –
Generation and Implementation discipline, ImpM – Implementation
model, Inf – Infrastructure discipline, InfM – Infrastructure model,
Mng – Management discipline, OM - Ontology model, QMP –
Quality Management Plan; PMP – Project Management Plan, Req –
Requirements discipline, RM – Requirements Model, SA – Software
Architecture, SPEM - Software & Systems Process Engineering
Metamodel Specification ([18]); T – Test discipline, TM – Test
model, UCM – Use case model.

As result of KBASE specification language introduction in
practice two important changes for the software companies are
identified: (1) development time is reduced with 40 – 60 % (2)
the business analysts are increased twice, and the implementers
are decreased more than three times.

VII. KBASE PLATFORM
The two key roles of the KBASE platform are: (1) the single

unified control of the generation and performance of all
KBASE products; (2) the creation, management and support of
a well standardized structure of reusable components.

The single unified control of the generation and
performance of all KBASE products is realized by the
Common Platform for Automated Programming (CPAP),
which is built on the following principles:

(a) CPAP components are arranged in: (1) Infrastructure
Layer; (2) Cloud Layer; (3) Control Layer; (4) DB Layer; (5)
Development Layer; (6) Operational Layer; (7) Knowledge
Layer; (8) Management & Planning Layer; (9) Integration
Layer. The layers communicate through a standard and
semantic Enterprise Service Bus.

(b) CPAP components are designed to build: (1)
embedded systems – for collecting information; (2)
information systems – for operational information
processing; (3) knowledge based systems – for automated

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 54

processing of large data sets, for generating new components
and for monitoring and re-configuration of CPAP; (4)
management and planning systems – for reports generation,
statistical data, trends, plans, and prognosis production.

(c) The Embedded Systems Manager, the Information
Systems Manager, and the KBASE Manager in P12 are CPAP
master managers. The master managers supported by their
respective models in P10, and integration definitions in P28,
generate all non-master managers and applications.

(d) CPAP non-master managers in P12, supported by their
respective models in P10, control the runtime performance of
their applications.

(e) The static and dynamic behavior of the master
components and systems is formally described by all P11
master models, and all P28 integration definitions using one or
more SL components.

(f) The static and dynamic behavior of the non-master
components and systems is formally described by all P11
non-master models, using one or more SL instruments.

(g) The collaboration between CPAP and its external
users (e.g. economic operators) is organized by Template
Information Systems (TIS) generated by the TIS Manager.
The TIS Manager is managing the IS Manager, KBASE
Manager, and Embedded Systems Manager for the purposes of
collecting data from external systems. The TIS Manager
manages the generation of the TIS meta-model in P11 and TIS
integration definitions in P28 for internal and external use. The
TIS Manager subsequently generates TIS in collaboration with
the Embedded Systems Manager, Information Systems
Manager, and Knowledge Base Manager.

The hierarchical structure created in KBASE CPAP is based
on the first CPAP classification [11]) and three widely
disseminated IS classifications, namely by Laudon ([15]),
Nevo ([30]), and Ralston ([1]).

The main strength of the first CPAP classification is the
well-defined system and business components. The key
weakness is the structure of the business applications layer.

The main strength of the Laudon classification is the well-
classified business components. The key weakness is the
coarse grained classification of system components.

The main strength of the Nevo classification is the balanced
presentation of hardware, firmware and software. The key
weakness is the incompleteness of component types.

The main strength of the Ralston classification is the well-
defined set of IS component types. The key weakness is the
insufficient detail in identified business components.

The CPAP classification is a combination of the strengths of
the above mentioned classifications. The CPAP architecture is
composed of nine layers:

L1 Infrastructure Layer organizes and manages the
hardware and communication infrastructure processes at
physical level (P01 Hardware) and operating system level (P02
Real OS) using virtualization tools (P03 Virtualization).

TABLE III. LAYER 1

Layer Pack Comp Layer/ Package/ Component
L1 0 0 Infrastructure Layer
L1 P01 0 Hardware
L1 P02 0 Real OS
L1 P03 0 Virtualization

L2 Cloud Layer automatically organizes the execution of
the requested work in the cloud environment. It is performed
under the control of the virtual operating system (P04 Virtual
OS) using scaling mechanisms (P05 Cloud instances), and
allocating the required physical and virtual resources (P06
Cloud cartridges).

TABLE IV. LAYER 2

Layer Pack Comp Layer/ Package/ Component
L2 0 0 Cloud Layer
L2 P04 0 Virtual OS
L2 P05 0 Cloud - instances
L2 P06 0 Cloud - cartridges

L3 Control Layer manages the execution of user
assignments at service level (through P07 Application Servers)
and process level (through P08 Control Servers).

TABLE V. LAYER 3

Layer Pack Comp Layer/ Package/ Component
L3 0 0 Control Layer
L3 P07 0 Application Servers
L3 P07 1 KBASE Indexing Server
L3 P07 2 Runtime Server
L3 P07 3 ODB Server
L3 P07 4 Web Server
L3 P07 5 RDB Server
L3 P07 6 Application Server
L3 P07 7 File Server
L3 P07 8 Security Server
L3 P07 9 Directory Server
L3 P07 10 Identity Server
L3 P07 11 PKI Server
L3 P07 12 Document Server
L3 P07 13 Search Engine
L3 P07 14 Test Server
L3 P07 15 Email Server
L3 P08 0 Control Servers
L3 P08 1 KBASE Server
L3 P08 2 Process Server
L3 P08 3 Case Server
L3 P08 4 Interface Server

L4 DB Layer contains data (P09 Data Base), components

and services (P10 Repository), and knowledge (P11
Knowledge Base) necessary for generating the required
software products by using BPMN and/ or UML
specifications, graphical interfaces, natural language, etc. The
models included in P11 are subject to various automated
verifications such as verification and modification based on
predefined standardized knowledge bases [7], business process
model quality assessment, and evaluation of business process
semantic correctness.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 55

TABLE VI. LAYER 4

Layer Pack Comp Layer/ Package/ Component
L4 0 0 DB Layer
L4 P09 0 Data Base
L4 P09 1 RDB
L4 P09 2 Data Warehouse
L4 P10 0 Repository
L4 P10 1 Components
L4 P10 2 Services
L4 P11 0 Knowledge Base
L4 P11 1 TIS Model
L4 P11 2 KBASE Model
L4 P11 3 IS Model
L4 P11 4 Embedded Systems Model
L4 P11 5 Case Model
L4 P11 6 Process Model
L4 P11 7 Form Model
L4 P11 8 Report Model
L4 P11 9 Service Model
L4 P11 10 Interface Model
L4 P11 11 Object DB Model
L4 P11 12 Relational DB Model
L4 P11 13 Security Model
L4 P11 14 Test Model
L4 P11 15 Document Model
L4 P11 16 GIS Model

L5 Development Layer contains a rich set of ready-made
tools that are provided on demand by the user to assemble
their software product. Components in L5 are organized in two
packages. The first package consists of components for design
management (P12 Design management) responsible for
managing the process of creating new software products in the
context of CPAP and updating them on demand (possibly in
real time) [6], [7]. The second package consists of components
for runtime management (P13 Runtime management)
responsible for managing the process of runtime performance
of software products in the context of CPAP.

TABLE VII. LAYER 5

Layer Pack Comp Layer/ Package/ Component
L5 0 0 Development Layer
L5 P12 0 Design management
L5 P12 1 KBASE Manager
L5 P12 2 TIS Manager
L5 P12 3 IS Manager
L5 P12 4 Embedded Systems Manager
L5 P12 5 Case Manager
L5 P12 6 Process Manager
L5 P12 7 Service Manager
L5 P12 8 Object Manager
L5 P12 9 Interface Manager
L5 P12 10 Test Manager
L5 P12 11 GUID Manager
L5 P12 12 GIS Manager
L5 P12 13 Security Manager
L5 P12 14 Report Manager
L5 P12 15 Admin Manager
L5 P12 16 DB Manager
L5 P12 17 Content Manager
L5 P12 18 History Manager
L5 P12 19 Rule Manager
L5 P12 20 Code list Manager
L5 P13 0 Runtime Management
L5 P13 1 Automation Manager
L5 P13 2 Cloud Services Manager

Layer Pack Comp Layer/ Package/ Component
L5 P13 3 Runtime Manager
L5 P13 4 Business Activity Manager

L6 Operational Layer consists of components (typically
reusable) for management of the work at business applications
operational level. The components here are split in five
packages: P14 Organization Management, P15 Document
Management, P16 Activity Management, P17 Collaboration
Management, and P18 User Support.

TABLE VIII. LAYER 6

Layer Pack Comp Layer/ Package/ Component
L6 0 0 Operational Layer
L6 P14 0 Organization Management
L6 P14 1 Organization Manager
L6 P14 2 Mandate Manager
L6 P14 3 Party Manager
L6 P14 4 Roles Manager
L6 P14 5 Policy Manager
L6 P15 0 Document Management
L6 P15 1 Document Manager
L6 P15 2 Register Manager
L6 P16 0 Activity Management
L6 P16 1 Legal Base Manager
L6 P16 2 Financial Manager
L6 P16 3 Payment Manager
L6 P16 4 Point of Sales systems (POS)
L6 P16 5 HR Manager
L6 P16 6 Customer Relationship Manager
L6 P16 7 Supply chain Manager
L6 P16 8 Marketing Manager
L6 P16 9 Procurement Manager
L6 P16 10 Sales Manager
L6 P16 11 Enterprise Resource Planning Manager
L6 P16 12 Assets Manager
L6 P16 13 Purchase Order Manager
L6 P16 14 Machine Control Manager
L6 P16 15 Plant Scheduling Manager
L6 P16 16 Quality Control Manager
L6 P17 0 Collaboration Management
L6 P17 1 Project Manager
L6 P17 2 Issue Manager
L6 P17 3 Configuration Manager
L6 P17 4 Wiki Manager
L6 P17 5 Cloud collaboration Manager
L6 P17 6 Creativity Support Manager
L6 P17 7 Conference Manager
L6 P17 8 Calendar Manager
L6 P17 9 Message Manager
L6 P17 10 Survey Manager
L6 P17 12 Social networking Manager
L6 P18 0 User Support
L6 P18 1 Product Support Manager
L6 P18 2 Training Manager

L7 Knowledge Layer consists of components (typically
reusable) for management of the work at business applications
knowledge management level. The components here are split
in five packages: P19 General Intelligence, P20 Perception,
P21 Natural language processing, P22 Social Intelligence, and
P23 Reasoning.

TABLE IX. LAYER 7

Layer Pack Comp Layer/ Package/ Component
L7 0 0 Knowledge Layer
L7 P19 0 General Intelligence

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 56

Layer Pack Comp Layer/ Package/ Component
L7 P19 1 Intelligent Agents Manager
L7 P19 2 Computer-Aided Design
L7 P19 3 5GL Manager
L7 P19 4 Intelligent Robots
L7 P19 5 Intelligent Computers
L7 P19 6 Neural Networks
L7 P20 0 Perception
L7 P20 1 Speech recognition Manager
L7 P20 2 Facial recognition Manager
L7 P20 3 Object recognition Manager
L7 P21 0 Natural language processing
L7 P21 1 Information Retrieval Manager
L7 P21 2 Machine Translation Manager
L7 P21 3 Question Answering Manager
L7 P21 4 Text Mining manager
L7 P22 0 Social Intelligence
L7 P22 1 Game Manager
L7 P22 2 Sentiment Analysis Manager
L7 P22 3 Virtual Reality Manager
L7 P23 0 Reasoning
L7 P23 1 Expert Systems
L7 P23 2 Case-Based Reasoning Manager
L7 P23 3 Fuzzy Logic Manager
L7 P23 4 Probability Manager
L7 P23 5 Machine Learning Manager

L8 Management & Planning Layer consists of components
(typically reusable) for management of the work at the
business applications management &planning level. The
components here are split in two packages: P19 Middle
management, P20 Strategic management.

TABLE X. LAYER 8

Layer Pack Comp Layer/ Package/ Component
L8 0 0 Management & Planning Layer
L8 P24 0 Middle management
L8 P24 1 Sales management
L8 P24 2 Annual budgeting
L8 P24 3 Capital Investment Analysis
L8 P24 4 Relocation analysis
L8 P24 5 Sales region analysis
L8 P24 6 Production scheduling
L8 P24 7 Cost analysis
L8 P24 8 Pricing/ probability analysis
L8 P24 9 Contract cost analysis
L8 P25 0 Strategic management
L8 P25 1 5-year sales trend forecasting
L8 P25 2 5-year operating plan
L8 P25 3 5-year budget forecasting
L8 P25 4 Profit planning
L8 P25 5 Personnel planning

L9 Integration Layer includes integration definitions and
products for integrating systems, processes, and services
developed within the organization, by partners or by third
parties. This layer includes: P26 Enterprise service bus (ESB)
and Semantic ESB, which are main communication
instruments of CPAP; P27 Presentation management
components, which are key I/O instruments of CPAP; P28
Integration Definitions, including the conventions for
integration of external and internal users with CPAP
components; P29 TIS integrators, including all components for
integration of end user applications with the same functionality
but with different implementation and architecture.

TABLE XI. LAYER 9

Layer Pack Comp Layer/ Package/ Component
L9 0 0 Integration Layer
L9 P26 0 ESB
L9 P26 1 Semantic ESB
L9 P26 2 ESB
L9 P27 0 Presentation Management
L9 P27 1 KBASE GUID
L9 P27 2 Developer GUID
L9 P27 3 Portal
L9 P27 4 SysAdmin GUID
L9 P27 5 End User GUID
L9 P27 6 GIS GUID
L9 P27 7 Reports GUID
L9 P28 0 Integration Definitions
L9 P28 1 Information Systems Integration Definitions
L9 P28 2 KBASE Integration Definitions
L9 P28 3 Template IS Integration Definitions
L9 P28 4 Embedded Systems Integration Definitions
L9 P29 0 TIS Integrators
L9 P29 1 Project Integrator
L9 P29 2 Authorization Integrator
L9 P29 3 Product Support Integrator
L9 P29 4 Assets Integrator
L9 P29 5 Financial Integrator
L9 P29 6 Payment Integrator
L9 P29 7 Register Integrator
L9 P29 8 Document Integrator
L9 P29 9 HR Integrator
L9 P29 10 CRM Integrator
L9 P29 11 ERP Integrator
L9 P29 12 Supply chain Integrator

As result of CPAP introduction in practice two important
changes for the software companies are identified: (1) the
reusability of components is radically improved due to the
realization of full design before implementation and the clear
separation between standardized and predefined components
of the domain independent, domain dependent and problem
solving phases; (2) improvement of documentation and
reduction of the gap between design and development by
introducing full design models descriptions, and highly
automated code generation based on the design models.

VIII. RESULTS
The three key results achieved in the related works confirm

that the proposed research is successful, i.e. Result 1 the GUI
management component in BeC.2 was realized by IL Java for
28 man-months (2 business analysts and 12 GUI
programmers). The same product in BeC.3 was developed by
intelligent self-organizing tool for 14 man-months (involving 4
business analysts and 3 GUI programmers); Result 2
Bulgarian Morphological Processor was realized in IL Pascal
with 12,000 source lines of code (including IT experts - 120
man-days, and Linguists - 40 man-days). The same
Morphological Processor was realized in 5GL Net with 800
source lines of code (including IT experts - 16 man-days, and
Linguists - 44 man-days); Result 3. During the design of the
prototype OSCAR realized following the Method for
automated programming of robots, 61,9% of the efforts were
dedicated to the domain independent phase (performed once in
the lifecycle), 37,26 % - to the domain dependent phase

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 57

(performed once for each new domain area), and only 0,84% -
to the problem solving phase (performed daily during the
lifetime of the product).

The KBASE method and related SL and CPAP represent
an original contribution to the SE area due to the following
main reasons: (1) generation of machine code from business
architectures, (2) replacement of the IT experts with DA
experts in key roles of SDP, and (3) new unified process. The
SL (as a combination of GML, 5GL, and NL specification
techniques) and CPAP (as a combination of knowledge based
automation and cloud computing), are new ideas that bring
together different strands of programming language theory,
and SE.

IX. CONCLUSION
The two economic challenges identified here (inefficient

SDP for EIS, and increasing demand of programmers) have
the potential to be solved to a great extent if the paradigm
Programming without programmers, and the proposed method
are successfully realized. KBASE success could generate a
number of possible effects, i.a.: (1) replacement of widely
disseminated industrial tools for IS programming with new
generation tools; (2) improvement of SDP efficiency (in
accordance with the Related works results), including
reduction of development time, and decrease of project
expenses; (3) decrease of programmers and increase of
business analysts, and DA experts in the SDP; (4)
modifications required in the BSc and MSc Programs in IT;
and (5) the modifications required in international IT
standards.

REFERENCES
[1] A.Ralston, E.D. Reilly, D. Hemmendinger, Encyclopedia of Computer

Science, 4th edition, John Wiley and Sons Ltd., 2003.
[2] Axelos Limited, Managing Successful Projects with PRINCE2. The

Stationery Office, 2017
[3] EU INCO Copernicus 96/0231. Intelligent Product Manuals (IPM).
[4] EU OPAC. К10-31-1 / 07.09.2010. Program: Extension of Bulgarian

Governmental administrative eServices Development (BeG).
[5] F.Liu et. all., NIST Cloud Computing Reference Architecture,

Gaithersburg: National Institute of Standards and Technology Special
Publication 500-292, US Department of Commerce, 2011

[6] I.Stanev, “Method for Automated Programming of Robots,” Knowledge
Based Automated Software Engineering, Cambridge Scholars Press,
Cambridge, pp.67 – 85, 2012.

[7] I.Stanev, K.Grigorova, “KBASE Unified Process,” Knowledge Based
Automated Software Engineering, Cambridge Scholars Publishing,
Cambridge, pp. 1 – 19, 2012

[8] I.Stanev, M. Koleva, Architecture Knowledge for Software Generation,
International Journal of Education and Information Technologies, ISSN:
2074-1316 Volume 12, 2018 Pp. 46-57.

[9] I.Stanev, M. Koleva, Bulgarian eGovernment Information System Based
on the Common Platform for Automated Programming – Technical
Solution. Proceedings of Tenth International Conference ISGT’2016,
Sofia, Bulgaria, Sep 30-Oct 1, 2016, ISSN: 1314-4855. Pp.125 - 134

[10] I.Stanev, M. Koleva, Bulgarian Health Information System based on the
Common Platform for Automated Programming, Tenth Mediterranean
Conference on Information Systems (MCIS), Paphos, Cyprus,
September 2016. Pp. 71.1 – 71.7.

[11] I.Stanev, M. Koleva, KBASE Technological framework - Requirements,
In: Proceedings of ICSII 2015 17th International Conference on
Semantic Interoperability and Integration, Rome, 2015. . Pp. 634 - 637

[12] I.Stanev, M. Koleva, Knowledge Based Automated Software
Engineering Platform Used for the Development of Bulgarian E-
Customs. In: Proceedings of 19th International Conference on Applied
Computer Science and Engineering (ICACSE 2017). London, UK, Dec
18-19, 2017, 19 (12) Part XVII. Pp. 1900 - 1906

[13] I.Stanev. Method for automated programming of Robots. PhD Thesis.
Department Informatics and Information Technologies. University of
Ruse. Ruse. Bulgaria. 2014. Pp.141.

[14] J.-D. Lovelock et all., “Forecast alert: IT spending, worldwide”, 1Q18
update, https://www.gartner.com/doc/3870395, April 2018.

[15] K.C. Laudon, J.P. Laudon, Management Information Systems:
Managing the Digital Firm 15th Edition, Pearson, 2017.

[16] K.Holtzblatt and H.Beyer, Contextual Design, Second Edition: Design
for Life. Morgan Kaufmann Publishers. San Francisco, 2016.

[17] M.B.Prescott, S.A.Conger, (1995). Information technology innovations:
a classification by IT locus of impact and research approach. ACM
SIGMIS Database, 26(2-3), 20-41.

[18] Object Management Group (OMG), Software & Systems Process
Engineering Metamodel Specification (SPEM) v.2.0.
http://www.omg.org/spec/SPEM/2.0 /, 2008

[19] OMG, Business Process Model and Notation v.2.0.2.
http://www.omg.org/spec/BPMN , 2014

[20] OMG, Case Management Model and Notation v1.1.
http://www.omg.org/spec/CMMN , 2016

[21] OMG, Decision Model and Notation v1.1.
http://www.omg.org/spec/DMN , 2016

[22] OMG, Unified Modeling Language v.2.5.1.
http://www.omg.org/spec/UML/ , 2017

[23] P.Abrahamson, O.Salo, J.Ronkainen, J.Warsta, Agile software
development methods: Review and analysis (Technical report). VTT.
478., 2002

[24] P.Kruchten, The Rational Unified Process: an Introduction, Addison-
Wesley, 2000.

[25] P.Mell and T.Grance, “The NIST Definition of Cloud Computing,”
Gaithersburg: National Institute of Standards and Technology NIST
Special Publication 800-145 US Department of Commerce. p.7, 2011

[26] Project EU IST-1999-20162 Development and Applications of New
Built-in-Test Software Components in European Industries, Software
Architecture, 2003

[27] Project Management Institute, A Guide to the Project Management
Body of Knowledge Sixth Edition, 2017.

[28] Project ДФНИ-И02/13 Development of method and Tool for
Generation, Verification and Behavior Evaluation of Business Processes
from Selected Domain Area (BPGen), 2018

[29] R.Bouzidi, F.Nader, R.Chalal, Towards a classification of information
technologies, In: Proceedings of the International Conference on
Computing for Engineering and Sciences (ICCES '17), July 22–24,
2017, Istanbul, Turkey, ACM New York, pp 24-28.

[30] S.Nevo, D.Nevo, P.Ein-Dor, P. (2009), “Thirty Years of IS Research:
Core Artifacts and Academic Identity," Communications of the
Association for Information Systems: Vol. 25 , Article 24.

[31] U.S. Bureau of Labor Statistics, Occupational Outlook Handbook,
https://www.bls.gov/ooh/computer-and-information-
technology/software-developers.htm#tab-6.

[32] W3C, Web Ontology Language v.2,
https://www.w3.org/standards/techs/owl#w3c_all , 2012.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 58

https://www.gartner.com/doc/3870395
http://www.omg.org/spec/SPEM/2.0
http://www.omg.org/spec/BPMN
http://www.omg.org/spec/CMMN
http://www.omg.org/spec/DMN
http://www.omg.org/spec/UML/
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#tab-6
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#tab-6
https://www.w3.org/standards/techs/owl#w3c_all

